Binomial Theorem

Unless otherwise stated, c_r denotes the coefficient of the x^r term in the expansion of $(1+x)^n$.

- 1. Use the binomial theorem to find the exact value of $(10.1)^5$.
- **2.** Use the binomial theorem to evaluate $(2+\sqrt{3})^4 + (2-\sqrt{3})^4$.

Hence, without using tables, show that $(2 + \sqrt{3})^4$ lies between 193 and 194.

- 3. (a) Find the values of the constants a and b if the expansion of $(1 + ax + bx^2)^6$ in ascending powers of x as far as the term x^2 is $1 12x + 78x^2$.
 - (**b**) Find the value of the term independent of x in the expansion of $\left(3x^2 \frac{1}{2x}\right)^2$.
- 4. Find the greatest term in the expansion of:

(a)
$$(1+4x)^8$$
 when $x = \frac{1}{3}$.

(b)
$$(3+2x)^9$$
 when $x = 1$.

- 5. Prove that the coefficient of x^n in the expansion of $(1 + x)^{2n}$ is double the coefficients of x^n in the expansion of $(1 + x)^{2n-1}$.
- **6.** Show that the coefficients of x^m and x^n in $(1 + x)^{m+n}$ are equal.
- 7. Show that for one value of r the coefficient of x^{r} in the expansion of $(3 + 2x x^{2})(1 + x)^{34}$ is zero.
- 8. Show that, if n is even, the coefficient of the middle term of $(1 + x)^n$ is

$$\frac{1\cdot 3\cdot 5\cdots (n-1)}{1\cdot 2\cdot 3\cdots \left(\frac{n}{2}\right)}2^{\frac{n}{2}} \text{ ; and that, if n is odd, the coefficient of each of the two middle terms is } \frac{1\cdot 3\cdot 5\cdots n}{1\cdot 2\cdot 3\cdots \left(\frac{n+1}{2}\right)}2^{\frac{n-1}{2}}.$$

9. Prove that : $c_1 - 2c_2 + 3c_3 - \ldots + n(-1)^{n-1} c_n = 0.$

10. Prove that :
$$c_0c_r + c_1c_{r+1} + c_2c_{r+2} + \ldots + c_{n-r}c_n = \frac{(2n)(2n-1)...(n-r+1)}{(n+r)!}$$

- 11. Prove that : $\sum_{r=0}^{n-1} c_r c_{r+1} = \frac{2(2n-1)!}{(n+1)[(n-1)!]^2}.$
- 12. Prove that : $\sum_{r=0}^{n-1} rc_{r+1} = 1 + (n-2)2^{n-1}.$
- **13.** If ${}_{n}C_{r}$ is the coefficient of x^{r} in the binomial expansion of $(1 + x)^{n}$, prove that:
 - (a) ${}_{n}C_{r} = {}_{n+1}C_{r} {}_{n}C_{r-1}.$ (b) $(3n+1) [{}_{2n}C_{n}]^{2} = (n+1) \{ [{}_{2n+1}C_{n}]^{2} - [{}_{2n}C_{n-1}]^{2} \}$
- **14.** If $(1+x)^{2n} = c_0 + c_1 x + c_2 x^2 + \ldots + c_{2n} x^{2n}$, show that $c_0 + c_2 + c_4 + \ldots + c_{2n} = 2^{2n-1}$.

15. Show that if
$$(1 + x + x^2)^{10} = c_0 + c_1 x + c_2 x^2 + ... + c_{20} x^{20}$$
, then $c_1 + c_2 + c_3 + ... + c_{19} = c_2 + c_4 + ... + c_{20}$.

16. If
$$(1 + x)^{2m+1} = c_0 + c_1 x + c_2 x^2 + \ldots + c_{2m+1} x^{2m+1}$$
, where m is a positive integer, show that:
 $c_0 + c_1 + c_2 + \ldots + c_m = 2^{2m}$.

17. If $x^n = p_0(x-a)^n + p_1(x-a)^{n-1} + p_2(x-a)^{n-2} + \ldots + p_n$, show that $p_r = ({}_nC_r) a^r$.

- 18. Prove that: ${}_{n}C_{n} + {}_{n+1}C_{n} + {}_{n+2}C_{n} + \dots + {}_{n+k}C_{n} = {}_{n+k+1}C_{n+1}$. (Hint: Consider $(1 + x)^{n} + (1 + x)^{n+1} + \dots + (1 + x)^{n+k}$.)
- **19.** In the expansion of $(1 + x)^n$, where n is a positive integer, by the binomial theorem, put x = 1 and hence show that $(n 1)! (2^n 2)$ is divisible by n.

Hence deduce Fermat's theorem that if n is any prime number, $2^{n-1} - 1$ is divisible by n.

20. If $f(r) = c_0c_r + c_1c_{r-1} + c_2c_{r-2} + \dots + c_rc_0$, where c_r denotes the coefficient of x^r in the expansion of $(1 + x)^n$, prove

that: (a)
$$f(r) = \frac{(2n)!}{r!(2n-r)!}$$
,

(b)
$$c_0 f(1) + 2c_1 f(2) + 3c_2 f(3) + ... + (n+1)c_n f(n+1) = \frac{2(3n-1)!}{(2n-1)!(n-1)!}$$

21. Prove the following identities:

(a)
$$({}_{n}C_{0})^{2} + ({}_{n}C_{1})^{2} + ({}_{n}C_{2})^{2} + \dots + ({}_{n}C_{n})^{2} = {}_{2n}C_{n},$$

- **(b)** $({}_{2n}C_0)^2 ({}_{2n}C_1)^2 + ({}_{2n}C_2)^2 + \dots ({}_{2n}C_{2n})^2 = (-1)^n {}_{2n}C_n,$
- (c) $({}_{2n+1}C_0)^2 ({}_{2n+1}C_1)^2 + ({}_{2n+1}C_2)^2 + \dots ({}_{2n+1}C_{2n+1})^2 = 0,$

(d)
$$({}_{n}C_{1})^{2} + 2({}_{n}C_{2})^{2} + ... + n({}_{n}C_{n})^{2} = \frac{(2n-1)!}{[(n-1)!]^{2}}$$

22. Prove that the sum of n + 1 terms of the series: $a + n(a + b) + {}_{n}C_{2}(a + 2b) + {}_{n}C_{3}(a + 3b) + ...$ is $2^{n-1}(2a + nb)$.

23. (a) Show that:
$$(1+x)^{2n} + x(1+x)^{2n-1} + \ldots + x^n (1+x)^n + x^{n+1}(1+x)^{n-1} + \ldots + x^{2n}$$

is equal to $(1+x)^{2n+1} - x^{2n+1}$.

(b) By using (a), or otherwise, show that the coefficient of x^n term in $(1 + x)^{2n} + x(1 + x)^{2n-1} + ... + x^n (1 + x)^n$ is equal to $_{2n+1}C_n$.

24. Prove that:
$${}_{n}C_{1} 1^{2} + {}_{n}C_{2} 2^{2} + \ldots + {}_{n}C_{n} n^{2} = n(n+1) 2^{n-2}$$
. (Hint: ${}_{n}C_{k} k^{2} = k(k-1) {}_{n}C_{k} + k {}_{n}C_{k}$.)

- **25.** In the expansion of $(1 + x + x^2)^n$, the coefficient of x^r term is a_r . Prove that:
 - (a) $a_0 + a_1 + \ldots + a_{2n} = 3^n$,
 - **(b)** $a_0 a_1 + a_2 a_3 + \ldots + a_{2n} = 1$,
 - $(c) \quad a_{n-r} = a_{n+r},$

(d)
$$a_0^2 - a_1^2 + a_2^2 - a_3^2 + \ldots + a_{2n}^2 = a_n$$

(e)
$$a_0^2 - a_1^2 + a_2^2 - a_3^2 + \dots + (-1)^{n-1} a_{n-1}^2 = \frac{1}{2} a_n [1 - (-1)^n a_n]$$

- (f) $a_0a_2 a_1a_3 + a_2a_4 a_3a_5 + \ldots + a_{2n-2}a_{2n} = a_{n+1}$.
- 26. (a) Write down the formula for the sum of the coefficients in the expansion of $(1 + x)^m$, where m is a positive integer.
 - **(b)** Deduce $\frac{1}{1!(2n)!} + \frac{1}{2!(2n-1)!} + \frac{1}{3!(2n-2)!} + \dots + \frac{1}{n!(n+1)!} = \frac{2^{2n}-1}{(2n+1)!}$
- **27.** If n is a positive integer and ${}_{n}C_{18} = {}_{n}C_{7}$, find the values of ${}_{n}C_{22}$ and ${}_{27}C_{n}$.
- **28.** If a_r is the coefficient of x_r term in the expansion of $(1 + x)^n$, prove that:

$$\frac{a_1}{a_0} + 2\frac{a_2}{a_1} + 3\frac{a_3}{a_2} + \dots + n\frac{a_n}{a_{n-1}} = \frac{1}{2}n(n+1).$$

- **29.** Find a_r , the coefficient of x^r , in the expansion of: $(1 + x)^n + (1 + 2x)^n + (1 + 4x)^n$, where n is a positive integer. Find the ratio $a_3 : a_{n-3}$ when n = 9.
- 30. If c_r is the coefficient of x_r in the expansion of $(1 + x)^n$, $c_0 + \frac{c_1}{2} + \frac{c_2}{3} + \dots + \frac{c_n}{n+1} = \frac{2^{n+1}-1}{n+1}.$ where n is a positive integer, show that

31. If
$$(1+x)^{2n} = c_0 + c_1 x + c_2 x^2 + \ldots + c_{2n} x^{2n}$$
, show that $2^{2n-1} = c_0 + c_2 + \ldots + c_{2n}$.

Sum the series: $1 + (2p-1)x + (3p-2)(p-1)\frac{x^2}{2!} + (4p-3)\frac{(p-1)(p-2)}{3!}x^3 + ...$, where p is a positive integer.

If n is a positive integer, prove that the coefficients of x^2 and x^3 in the expansion of $(x^2 + 2x + 2)^n$ are $2^{n-1}n^2$ 32. and $\frac{1}{2}2^{n-1}n(n^2-1)$ respectively.

- Find the coefficients of the terms in x^5 and $1/x^5$ in the expansion of $\left(1 + x \frac{2}{x^3}\right)^{\prime}$ in powers of x. 33.
- If $(1 2x + 2x^2)^{10} = 1 + ax + bx^2 + ...$, find the values of a and b. 34.
- Find the positive integral value of n which makes the ratio of the coefficient x^4 to that of x^3 in the expansion 35. of $(1 + 2x + 3x^2)^n$ in a series of powers of x is equal to 121/28.
- **36.** If $(1 + x + x^2)^{3n} = c_0 + c_1 x + c_2 x^2 + \ldots + c_{6n} x^{6n}$, prove that $c_0 c_1 + c_2 c_3 + c_4 \ldots + c_{6n} = 1$.
- **37.** If, in the expansion of $(a + x)^n$, s_1 is the sum of the odd terms and s_2 is the sum of the even terms, show that: $s_1^2 - s_2^2 = (a^2 - x^2)^n$, and $4s_1s_2 = (a + x)^{2n} - (a - x)^{2n}$.
- **38.** By comparing the coefficients of x^{r} on both sides of the identity $(1 + x)^{n} = (1 + x)^{2}(1 + x)^{n-2}$, prove that: ${}_{n}C_{r} = {}_{n-1}C_{r} + 2({}_{n-2}C_{r-1}) + {}_{n-2}C_{r-2}$.
- **39.** If $c_r = {}_nC_r$, where r = 0, 1, 2, 3, ..., n, and if $f(r) = c_0c_r + c_1c_{r-1} + c_2c_{r-2} + ... + c_rc_0$, prove that $f(r) = {}_{2n}C_r$.
- Show that for one value of r the coefficient of x^{r} in the expansion of $(3 + 2x x^{2})(1+x)^{34}$ is zero. 40.
- **41.** If $(1 x + x^2)^{3n} = a_0 + a_1 x + a_2 x^2 + ...$ and $(x + 1)^{3n} = c_0 x^{3n} + c_1 x^{3n-1} + c_2 x^{3n-2} + ...$ $a_0 + a_1 + a_2 + \dots = 1$ and $a_0c_0 + a_1c_1 + a_2c_2 + \dots = \frac{(3n)!}{n!(2n)!}$ prove that
- Find a positive integer p such that the coefficients of x and x^2 in the expansion of $(1 + x)^{2p}(1 x)^p$ are 42. equal.
- If I is the integral part and F the fractional part of $(3\sqrt{3}+5)^{2n+1}$, prove that $F(I+F) = 2^{2n+1}$. 43.
- $\sum_{r=1}^{mn} a_{r} x^{r} \equiv (1 + x + ... + x^{m})^{n}$ Given positive integers m, n, let 44. (*)
 - (a) Find expressions for the following in terms of m an n only:

(i)
$$\sum_{r=0}^{mn} a_r$$
 (ii) $\sum_{r=0}^{mn} (-1)^r a_r$ (iii) $\sum_{r=0}^{mn} 2^r a_r$

(b) By differentiating (*), or otherwise, show that

$$mn\sum_{r=0}^{mn} a_r = 2\sum_{r=0}^{mn} ra_r$$
 .

(c) Show that: $\sum_{r=1}^{m} (-1)^r r = \begin{cases} \frac{m}{2} & \text{, if m is even} \\ -\frac{m+1}{2} & \text{, if m is odd.} \end{cases}$ Hence, show that $2\sum_{r=1}^{m} (-1)^r ra_r = \begin{cases} mn & \text{, if m is even} \\ 0 & \text{, if m is odd.} \end{cases}$

45. Prove that ${}_{n}C_{r+1} = {}_{n-1}C_{r} + {}_{n-1}C_{r+1}$. Hence show that for n > r, ${}_{n}C_{r} = \sum_{i=0}^{r} {}_{n-i-1}C_{r-i}$.

46. Show that ${}_{n}C_{r} = {}_{n-1}C_{r-1} + {}_{n-1}C_{r}$. Hence, by induction or otherwise, evaluate $\sum_{q=0}^{n} {}_{n+q}C_{q} \frac{1}{2^{n+q}}$.

- **47.** Polynomials $C_r(x)$ are defined by $C_0(x) = 1$ and $C_r(x) = \frac{x(x-1)...(x-r+1)}{r!}$, for $r \ge 1$.
 - (a) Show that if n is an integer, then so is $C_r(n)$.
 - (b) Show that any polynomial p(x) with rational coefficients can be expressed in the form $b_k C_k(x) + b_{k-1} C_{k-1}(x) + ... + b_0 C_0(x)$, where all the b_i 's are rational and k is the degree of p(x). Show that all the b_i 's are integers.
 - (c) Suppose that p(x) is a polynomial with real coefficients such that whenever a is a rational number, then so is p(a). Show that the coefficients of p(x) are all rational.

48. Prove that **(a)**
$$\sum_{k=0}^{n} (C_{k}^{n})^{2} = \frac{(2n)!}{(n!)^{2}}$$
 (b) $C_{k}^{n} \frac{1}{n^{k}} \le \frac{1}{k!}$ **(c)** $\left(1 + \frac{1}{n}\right)^{n} < 3$

49. For any positive integers m, p such that $m \ge p-1$, let $G(m,p) = \frac{(1-x^m)(1-x^{m-1})...(1-x^{m-p+1})}{(1-x)(1-x^2)...(1-x^p)}$.

- (a) Show that G(m, p) = G(m, m-p) for m > p.
- (b) Suppose $p \le m 1$,
 - (i) Show that $G(m, p+1) G(m-1, p+1) = x^{m-p-1} G(m-1, p)$.
 - (ii) By putting p + 1, p + 2, p + 3, ... for m in (i), or otherwise, show that $G(m, p + 1) = G(p, p) + x G(p + 1, p) + x^2 G(p + 2, p) + ... + x^{m-p-1} G(m-1, p).$
- (c) Use induction on p to show that G(m, p) is a polynomial in x for any positive integer m such that $m \ge p 1$.
- **50.** Let a_1, a_2, \ldots, a_n be n distinct real numbers.
 - Let $f(a) = (x a_1) (x a_2) \dots (x a_n)$ and f'(x) the derivative of f(x).
 - (a) Express f'(a_i) in terms of $a_1, a_2, ..., a_n$.
 - (b) Let g(x) be a real polynomial of degree less than n.
 - (i) Show that there exist unique real numbers $A_1, A_2, ..., A_n$ such that

$$g(x) = \sum_{i=0}^{n} A_{i}(x-1)...(x-a_{i-1})(x-a_{i+1})...(x-a_{n})$$
(*)

(ii) Using (i) or otherwise, show that if f(x) is of degree less than n-1, then $\sum_{i=1}^{n} \frac{g(a_i)}{f'(a_i)} = 0$

(iii) By taking $a_i = i$ and suitable f(x) in (ii), show that,

$$\sum_{i=l}^{n} (-1)^{n-i} \frac{i^m}{(i-1)!(n-i)!} = 0$$

(Given that 0! = 1)